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COMPARISON OF GRYZlNSKl  AND BORN CROSS SECTIONS FOR 

THE METASTABLE 2s STATE OF ATOMIC HYDROGEN 

by C a r l  F. Monnin a n d  George M. Prok  

Lewis Research Center  

SUMMARY 

Excitation and ionization cross  sections for electron scattering in metastable atomic 
hydrogen were calculated by the Born approximation and by the semiclassical theory of 
Gryzinski. The transitions investigated were excitations from the 2 s  level to n = 3,4 
and ionization. The energy range of the incident electron was from the threshold to 
400 electron volts. In the Gryzinski theory the atomic electrons may be assumed to have 
a distribution of velocities or  a single, average velocity. In this  report, excitation c ross  
sections calculated with the use of both assumptions are compared with the results of the 
Born approximation. The cross  section resulting from the velocity distribution agreed 
better with the Born approximation than with the cross  section resulting from the average 
value of the velocity. Since no experimental results are available, the Born approxima- 
tion above 200 electron volts is assumed correct. The shapes of the Gryzinski-cross- 
section curves are similar to those for the Born approximation over the energy range in- 
vestigated. 

INTRODUCTION 

Many investigators have determined excitation and ionization c ross  sections for 
electron impact in atomic hydrogen (refs. 1 to 14). Most of the theoretical and experi- 
mental work has been the determination of cross sections for transitions from the ground 
state of hydrogen (refs. 1 to 10). Cross sections for electron impact in excited atomic 
hydrogen have been determined by the Born approximation (refs. 11 to 14). References 
11 to 14, however, either do not calculate the cross sections of interest or  do not carry 
them to as high an incident energy as they are carried in th i s  report. 

field quenching, is about 2.4 milliseconds (refs. 15 and 16). Because of this relatively 
The lifetime of the metastable 2s state, in the absence of collisional and electric 



long lifetime, a significant concentration of metastable hydrogen could exist under cer-  
tain circumstances. Hence, there is a need fo r  c ross  sections from the 2s  level. The 
object of this report was to calculate excitation c ross  sections of atomic hydrogen from 
the 2s  to the n = 3,4 levels and to ionization. 

tering cross  sections. The Born approximation was used because it is known to give 
correct cross sections for high-energy incident electrons; the Gryzinski theory was used 
because of its easy calculation and because of its past agreement for  c ross  sections from 
the ground state (ref. 10). 

In the Gryzinski model the s - s transitions are assumed to take place by electron 
exchange (ref. 17). All other transitions a r e  assumed to take place by an excitation 
process. Gryzinski developed two relations for  excitation c ross  sections (refs. 17 
and 18). Assuming that the atomic electron has a distribution of velocities leads to a 
relation with (In E2)/E2 behavior at high energies, while assuming that the atomic elec- 
tron has a constant average velocity leads to 1/E2 behavior, where E2 is the energy 
of the incident electron. 

The cross sections given by the Born approximation and by the Gryzinski theory are 
compared in the energy range of threshold to 400 electron volts. In addition, a compari- 
son is made between the two excitation c ross  sections given by Gryzinski. 

The Born approximation and Gryzinski theory were used to calculate inelastic scat- 

THEORY OF SEMICLASSICAL (GRYZINSKI) METHOD 

Using classical mechanics, Gryzinski developed a theory giving excitation (refs. 17 
and 18) and exchange (ref. 17) cross  sections. Gryzinski assumed that s - s transitions 
take place only by  the exchange process. The exchange c ross  section is given by equa- 
tion (69) of reference 17: 

where 

n 
ge 

I- if Un+l 2 E2 



and 

=0 = 6 . 5 1 ~ 1 0 - l ~  (cm2)(eV2) (3) 

(A list of symbols is given in appendix A. ) 

tion process. In reference 18 Gryzinski assumed that the velocities of the bound electron 
have some mean value. In reference 17 this assumption is not made, and the target 
electron has a velocity distribution. The assumption of an average value for velocity of 
the target electron leads to the excitation c ross  section given by equation (26) of refer- 
ence 18: 

All transitions other than s - s transitions are assumed to take place by an excita- 

Q(Un) = 2 gj($; 2) 
v2 n 'n 

where 

f ,  

(4) 

if Un+ E15E2 

Averaging the excitation c ross  section over the velocity distribution of the target electron 
leads to the form in equation (7) of reference 17: 
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In equations (1) to (6) Un and Un+l are the energies of the n and the n + 1 levels - 
above the energy of the 2 s  level. The ionization potential is Ui, and El and E2 are 
the kinetic energies of the bound and the incident electrons, respectively. 

The excitation cross  section Q(Un) is proportional to the probability that the incident 
electron wi l l  lose an amount of energy greater than o r  equal to the energy difference be- 
tween level n and the initial (2s) level. The cross  section for a given transition to level 
n is given by 

As was  pointed out in reference 10, the Gryzinski excitation c ross  section is for  a transi- 
tion to a principal quantum level and not to the individual sublevels. The Born approxi- 
mation cross sections to all the sublevels of a principal quantum level, with the exception 
of the s sublevel, must therefore be summed for  comparison with the Gryzinski excita- 
tion cross  section. 

THEORY OF BORN APPROXIMATION 

Excitation Cross Section 

The first Born approximation is sufficient to determine the cross section fo r  the ex- 
2 citation o r  ionization of an atom by a fast electron (ve >> e /h). The differential cross 

section for excitation from the 2 s  level to a higher excited level n with momentum 
change between K and K + dK is given by 

where the momentum change is given by 

in which (kh/2n)f0 and (k'h/27r)fl are the initial and the final momentum vectors of the 
scattered electron, respectively. The wave functions of the 2s  level and the higher ex- 
cited state are *200(F) and qnlm(;), respectively. The potential V(< R) is the 
Coulomb potential between the incident electron and the atom. The differential volume 
elements of the atomic and the incident electrons are dTr and dTR, respectively. 
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The integration of equation (8) is performed in appendix B of this report for a Cou- 
lomb potential by using the well-lmown hydrogen wave functions. The results of the inte- 
gration are 

G2 dK 2 4 5 2  [(z + ‘)!I2 (n - 2 - l)! m e a n  
Iex(K)dK = 2 82+18 e ( m a O ) 2 2 ( 2 ~  + 1) 

( n +  Z)! 22+4 K3k2 h4 En + 2)2 + 16c2] 

where 

G E (n2 + n - l)Cn-2-l 2+2 (X)En-2 -2 - 242 + 1)Cn-2-2 2+2 (x)En-2 -1 

-1/2 
X E (n2 - 4 + l6c + 2)2 + 16(2]kn - 2)2 + 16c2]} 

€2 f [(n - 2)2 + 16c2] 

KnaO 

2 
c =- (14) 

, t The functions Cs(X) are the Gegenbauer polynomials defined by the generating function 

If the coefficients of all the Gegenbauer polynomials with a superscript of 2 + 2 in 
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equation (5) of Boyd (ref. 12) change sign, the results are the same as equation (10) of 
th i s  report. This fact can be demonstrated by making the sign change and performing 
algebraic manipulation with the use of the recursion formulas for  the Gegenbauer poly- 
nomials. Although equation (5) of reference 12  is squared, the c ros s  t e rms  will retain 
the incorrect sign. Boyd does not present numerical results with this method; he does 
present results based on the use of parabolic coordinates to discrete principal quantum 
levels. The numerical results of reference 12 agree well with the equivalent results 
given her e in. 

The total cross  section of a transition can be obtained by integrating over the allowed 
momentum change: 

. 

Q ex (K) = SKmm Iex(K)dK 
Km in 

where 

and 

= k +  k' Kmax 

Kmin = k - k' 

Ionization Cross  Section 

The differential c ross  section for ionization from the 2s  level is given by 

12 
2 2  

h4 
1, dK do d w  = - 4n me - k' Ilb(c g)expk(kfo - k'fl) - E]+b200(?)+bE(F)d~r dTR dK dodw 

where K' is the momentum of the ejected electron and +:(F) is the Coulomb wave func- 
tion of the ejected electron. The solid angle into which the target electron is ejected is 
do, and the solid angle into which the incident electron is scattered is do. 

The integration of equation (17) is given in appendix C; the result of the integration 
is 
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- + K  - 8 

2 8  
2 BK 1, dK do dw = I(K, K)dK dK = 

15k Kao [; - exp ( %I{[< + (K + K)? [$ + (K - K ) q Y  

where 

8 6 4  4 A p10 + (47K2 + 8 5 ~ ~ )  + I (25K + 35K ) 
256 2 56 16 

4 

8 
+ (205K6 - 155K4~2 - 4 1 ~ ~ ~ '  + 55K6) 

and 

Thus, the total ionization cross  section becomes 

&. ion (K, K )  = AKmu JKmU I(& K)dK dK 
Km in 

These results follow from a method given in reference 9 for  ionization of atomic hy- 
drogen in the ground state. 

RESULTS AND DISCUSSION 

The calculated results of the 2s - n s  transitions are presented in figure 1. The 
Gryzinski c ros s  sections are much sharper than the Born c ross  sections and are 
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5: (a) 2s -3s transition. c v) 
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Born approximatior 
Gryzinski theory 

* - 1  2 4 6 8 1 0  20 40 6080100 200 4oo 
Electron energy, eV 

(b) 2s -4s transition. 

Figure 1. - Atomic hydrogen cross section for 2s - ns transttlons. 
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negligible at incident electron energies above 25 electron volts. Because of the sharp- 
ness  of the peak and the size of the steps used in the numerical analysis, the maximum 
of the cross  section may be higher than indicated in figure 1. 

sitions are  shown in figure 2. The classical theory of Gryzinski, with’and without the 
velocity distribution, was used to obtain composite c ross  sections for  transitions from 
the 2s level to higher excited principal quantum levels. The Born approximation c ross  
sections for all the sublevels of a principal quantum level are summed to obtain a com- 
posite cross  section which can be compared with that given by the Gryzinski theory. The 
composite cross sections are shown in figures 3 and 4 for  principal quantum levels 3 
and 4, respectively. The Gryzinski theory with the velocity distribution agrees  better 
with the Born approximation than does the Gryzinski theory which uses  an average value 
for the velocity. 

In figure 5, the 2s - ionization c ros s  section is presented for  the Born approxima- 
tion and for  the classical theory of Gryzinski with and without the velocity distribution. 
Again, the c ross  section resulting from the use of the velocity distribution agrees  better 
with the Born approximation. The c ross  section resulting from the distribution crosses  
the Born approximation at about 20 and again at about 200 electron volts and l ies between 
the c ross  sections given by the other theories. 

of Burhop (ref. 11). Boyd (ref. 12), Swan (ref. 13), and Mandl (ref. 14) have also de- 
rived the ionization c ross  section from the 2s level. Because there are misprints in 

The Born approximation c ross  sections for the 2s - np, 2s - nd, and 2s - 4f tran- 

The Born approximation formula for  the 2s - ionization transition agrees  with that 

Figure 3. - Atomic hydrogen cross section for 2s -(3p t &I) transition. 
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2 4 6 8 1 0  
Electron energy, eV 

Figure 4. - Atomic hydrogen cross section for 2s -(4p t 4d + 4f) transition. 

40 60801w 200 
Electron energy, eV 

Figure 5. - Atomic hydrqlen cross section for 2s -ionization transition. 

these papers, the formula was rederived herein. None of these authors present numeri- 
cal calculations for the 2 s  - ionization transition. 

CONCLUDING REMARKS 

The Gryzinski exchange theory produces cross sections that peak sharply at low 
energies and become negligible above 25 electron volts. The Born approximation gives 
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results that are higher than those given by the Gryzinski theory for energies in the range 
of a few electron volts above onset energy to 400 electron volts. 

For  excitation cross sections, better agreement with the Born approximation is ob- 
tained when a velocity distribution is assumed for  the target electrons in the Gryzinski 
theory. At high energies this approximation leads to (In E2)/E2 behavior, compared 
with the 1/E2 behavior which results from assuming an average velocity. 

Similar results hold for the ionization of the 2 s  level. In the high-energy range, 
where the theories should be valid, the excitation-cross-section formula gives better re- 
sults when a velocity distribution of the target electron is used than when an average 
value of velocity is used. The main difference is that the Gryzinski theory with the ve- 
locity distribution yields results above those of the Born approximation in the intermedi- 
ate energy range between 20 and 200 electron volts. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 26, 1966, 
129-01-05-09-22. 
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APPENDIX A 

SYMBOLS 

defined by eq. (19) 

Bohr radius, cm 

Gegenbauer polynomial de- 
fined by eq. (15) 

kinetic energy of ejected 
electron, eV 

kinetic energy of atomic 
electron, eV 

kinetic energy of incident 
electron, eV 

Neumann number (1 for 
m = 0; 2 for m # 0) 

electronic charge, esu 

hypergeometric function, 
Pochhammer notation 

defined by eq. (11) 

defined by eq. (2) 

defined by eqs. (5) and (6) 

Planck's constant, erg-sec 

defined by eq. (C33) 

Born's differential excitation 
2 cross  section, cm 

Born's differential ionization 
2 c ross  section, cm 

Bessel function of order p 
andargument x 

magnitude of momentum 

-1 
change for exciting colli- 
sion, cm 

wave number of incident elec- 
tron, cm-l  

wave number of scattered 
electron in exciting colli- 
sion, cm -1 

wave number of ejected elec- 
tron in ionizing collision, 
cm-l  

Lague r re polynomial 

orbital angular momentum 
quantum number 

magnetic quantum number 

mass of electron, g 

normalizing factor 

principal quantum number 

Legendre polynomial 

excitation c ross  section, 
2 Gryzinski, cm 

exchange cross  section, 
2 Gryzinski, cm 

excitation c ros s  section, Born 
2 approximation, cm 

ionization c ross  section, Born 
2 approximation, cm 

magnitude of radius vector of 
incident electron, cm 

spherical coordinates of 
atomic electron 
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s, P, d, f 

'i 

'n 

w, 

ve 

X 

A 

YO 

A 

Y 1  

14 

energy levels for  2 = 0, 1 ,2 ,3 ,  K 

ionization potential, eV I-L 

energy of level n, eV 

respectively 

0 
0 

Coulomb potential between 
electron and atom, da 
(e su2)(cm-l) 

(cm )(set - '1 
speed of incident electron, dTR 

defined by eq. (12) 

unit vector in direction of dTr 
ejected electron 

unit vector in direction of 
incident electron 

unit vector in direction of 
scattered electron 

gamma function of argu- 
ment x 

angles defined in fig. 6 

defined in eq. (13) 

Knao/2 

magnitude of momentum of 
ejected electron, cm- l  

l/ao, cm-l 

re4z2 for  incident particle, 
(cm 2)(ev2) 

solid angle into which target 
electron is ejected 

differential volume element in 
coordinate space of bound 
electron 

differential volume element in 
coordinate space of incident 
electron 

qnlm(F) wave function 

ICl,*C.') Coulomb wave function 

d o  solid angle into which incident 
electron is scattered 

Superscripts: 

- vector 

* complex conjugate 



APPENDIX B 

DERIVATION OF BORN EXCITATION FORMULA 

The integral to be evaluated is 

4 -  

where the potential V(r, R) is the Coulomb potential between the incident electron and 
the atom. Because of the orthogonality of the atomic wave functions, the Coulomb inter- 
action between the incident electron and the atomic nucleus vanishes. 

Substituting the potential and the wave functions into equation (8) gives 

3 2  

h4 k2 

8r me K ~ K  I (K)dK=- - ex 

where 

Integration over the coordinates of the incident electron by the usual method (ref. 19, 
p. 163) gives 



Expressing the coordinates of the atomic electron as spherical coordinates and sub- 
' 

stituting equation (B3) into equation (Bl) give 

3 2  
I (K)dKa- 8' me - K ~ K  

h4 k2 
ex 2NzooNnl %lyy2" exp(iKr cos 8) (2 - -$exp(<) 

0 0  K 

I 2  

The integral over cp is 

for m = 0 

for m # 0 
Iq = J2' exp(rtimcp)dcp =[" 

Because P: = P2, the integral over 8 is given by 

Io = x" exp(iKr cos 8)Pz(cos 8)sin 8 d8 

From reference 20 (p. 77), 

where Ci/2(cos 8) is a Gegenbauer polynomial. From reference 20 (p. 77), 

The integral over r becomes 
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* An integral is defined 

where 

and 1, n, and s a r e  integral constants. Multiplying equation (B10) by us/(21 + 1 + s)! 
and summing on s yield 

The generating function for the Laguerre polynomial as given by Schiff (ref. 19, p. 85) is 

ca 
8 - - U 

(1 - u)21+2 (22 + 1 + s)! 
S=O 

(BE)  

Combining equations (B14) and (B15) gives 
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For the particular value s = n - 2 - 1, equations (B9) and (B10) indicate that 
I(n, 2, n - 1 - 1) 
on the right side of equation (B16). From reference 20 (p. 32), 

Ir; thus Ir may be evaluated by determining the coefficient of u n-2-1 

By using the following properties of the hypergeometric function (ref. 20) 

F (a + 1, b + 1; c + 2; 2) 
ab2 

2 1  F (a,b; c; z) = 2Fl(a,b; c + 1; z) + 
c(c + 1) 2 1  

and 

F (a,b; c; d) = 2Fl(b, a; c; d) 2 1  

2F1(-n, m; m; -x) = (1 + x)" 

equation (B16) can be stated in the following form: 

4(1 - u) ]'"'"'[ 2f + l6C2(1 - u ) ~  
x Ln + 2) - (n - 2)u [(n + 2) - (n - 2)u12 

-(2+2) 
16c2(1 - u ) ~  

[(n + 2) - (n - 2)u12 [(n + 2) - (n - 211.11 
+ !I (22 + 3) 

2 

16c2(1 - u ) ~  

(2' + 3) Bn + 2) - (n - 2)u12 [(n + 2) - (n - 2)u12 

(22 + 4) 16c2(1 - u ) ~  

18 



Equation (B21) can be written as 

4 
2, s)us = B(1 - u) I +- c(1 -u)2 D(l -u) (B22) 

[(,+2)- (n- 2)u] 

(22+ 1 + s)! 1+2 2+2 2y3 
s=o (1-2xv+v2) (1-2xv+v2) (1-2xv+v 

where 

x , A  [ - 4; l6P-J 

E (n+ 2) + 16g 

- 

[(n + 2)2 + 16<2]2+2r(Z + 4) 

2 Fxpanding (1 - 2Xv + v ) in te rms  of Gegenbauer polynomials, equating coefficients of u, 
and recalling that I(n, 2, n - 2 - 1) = I, give 
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- 4n(l+ 1)CE;-2(X)~n-1-2 + 2(nl + n + l)Cn-1-3(X)~ 1+2 n-1-3 

Substituting equations (B5), (B8), and (B28) into equation (6) gives 

2 4 5 2  m e a n  
Iex(K)dK = 2 81+18 e (Kna0)21(21 + 1) (n - 2 - l)! 

h4 (n + l ) !  

where 

G = (nl+ n - l)Cn-l-l 1+2 (x)En-l-l - 2n(1+ I ) C E ? - ~ ( X ) E  n-1-2 

-2 dK [(1 + 1)!]2 
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APPENDIX C 

DERIVATION OF BORN IONIZATION FORMULA 

The integral to be evaluated is 

(17) 

-.c 

where V(r, R) is the Coulomb potential between the incident electron and the atomic elec- 
tron. The metastable 2 s  wave function is $',,,, and $':(;) is the Coulomb wave func- 
tion. 

where 

5' = r(1 + cos 0) 

cos 0 = cos e cos  $' + sin e sin $' cos(q - x) 

(The angles x, 0, 8 ,  $', and q are shown in fig. 6.) 4 

The momentum change of the incident electron i s defined as 

Figure 6. - Directions and angles in- K = wo - klgl (C6) 
volved in ionizing collision. 

and the momentum of the ejected electron is defined as 
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where E, is the energy of the atom measured with respect to its ionization limit. The 
potential is given by 

Substituting equations (Cl), (C2), (C6), and (C8) into equation (17) gives 

12 ~ 

X Job(iK['u)'/z]du dTR dTrl dK du do  (C9) 

where 

2 
Cyr m e [ n ]$ 

32n-a;h4[r(l - in)] 2 1 - exp(-2m) 

By the usual method (ref. 19, p. 163), integration over the coordinates of the incident 
electron gives 

4 -  4n 2 - 9 4  

exp(iK * R)dTR = - e exp(iK * r) s 1;- e2 El K2 

Equations (C4) and (C11) are substituted into equation (C9), and parabolic coordinates [, 
q, and cp are introduced, where 

= r(1 + cos 0 )  (C 12) 

and e 

The ref o r  e, 

77 = r(1 - cos e) (c13) 
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r= -  5 + 1 7  
2 

X Jm[[-(..? $ull ' jcos m(n - q + x) (5+77) 4 d q  d[ dq du 

COS e - 5  - - -17 
2r  

2 

dK do d o  (C19) 

sine=- I6 
r 

From reference 20 (p. 21), 

where e, is the Neumann number (eo = 1 and em = 2 for m = 1, 2, 3, . . .). Sub- 
stituting equations (C10) to (C18) into equation (C9) gives 

2 4  16r  e (y 1, dK Q d o  = 
K4 

The integral over q has the form 

24 



2n for m = 0 

for m # 0 
cos m(n - cp + X)dq = 

Combining equations (C19) and (C20) and substituting p E l/ao give 

where 

X Jof ['K 5 (cos2 $u] ' / ~ J o f !  (sin2 $u] '/Z)d( dq du (C22) 

From reference 20 (p. 35), 

exp(-At)Jo(2Pt 1/2 )dt = - 1 exp 
x 

Combining equations (C22) and (C23) gives 

Integration with respect to u gives 

25 



With n treated as a constant, equation (C25) is substituted into equation (C21). The first  
and second derivatives of equation ((225) are taken, and then the result is simplified by 
substituting n f/Kao into the equation. Thus, 

where 

p’ E 

K 

\ 

arctan 
2 

4 

where 

2 2  Co E A. + Bo 



3 Bo p KK 

5 4 
B 1-8 = 

- 3p3K2 - 2p3K2 + 2pK4 - 2 p K  

3 3 3 
B2 

The solid angle do  is given by 

4 p  KK - 4 p K  K + 4pKK 

d o  = 2n s in  0 de 

Substitution of equations (C27) and (C28) into equation (C26) gives 

8 4  2 4  2 n mee 
d K  du 1, d o  = J 

- + K  - K  

d K  do k' K 

kK2 {[$ + (K + K)! [< + (K - 

- 

(co + clx + c2x 2 + c3x 3 + c4x4)dx 

(C29) 

2 - + K  

where 

If 

x = cos e 

p 2  2 2 a = - + K  + K  
4 

b f - 2 K K  



the integral in equation (C29) becomes 

2 a a 

(C33) a -'L 4b2 (a + b)4 (a 

The solid angle du is given by 

d u = 2 n s i n 8 d 6  

Making use of the differential form of equation (C7) yields 

KdK Q=27r- 
kk' 

The Bohr radius, 

h2 

4n mee 
a o =  2 2 

and equations ((233) and (C35) are substituted into equation (C29) to get 

(C 3 5) 

Qion = 

Kmax 

I exp (2' - - arctan $ + : ' - K )  

{[$ + (K + [$ + (K - K ) , I > Z  

dK 
K 
- 
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where 

Kmax k + k' 

Kmh k - k' 

2 871 me 
KmaX 

and Ui is the energy of ionization. The term €Jon represents the total ionization cross  
section from the 2s level. This form is the one which Mandl (ref. 14) uses. Others 
(refs. 11, 13, and 15) go further and make the substitutions required in equation (C33). 

I The results of these substitutions agree with those of Burhop (ref. 11) and are as follows: 

8 2 7IK I(K. K)dK d K  = . ,  , 
2 8  15k Kao 

where 

6 
pl0  + &- (47K + 8 5 ~ ~ )  + 

256 2 56 16 
A = -  8 2  ( 2 5 ~ ~  + 35K4) 

4 

8 
+ k (205K6 - 155K4~2 - 4 1 ~ ~ ~ ~  + 55K6) 
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